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INTRODUCTION

Abstract

Detection error can bias observations of ecological processes, especially when
some species are never detected during sampling. In many communities, the
probable identity of these missing species is known from previous research and
natural history collections, but this information is rarely incorporated into sub-
sequent models. Here, I present prior aggregation as a method for including
information from external sources in Bayesian hierarchical detection models.
Prior aggregation combines information from multiple prior distributions, in
this case, an ecologically informative, species-level prior, and an uninformative
community-level prior. This approach incorporates external information into
the model without sacrificing the advantages of modeling species in the context
of the community. Using simulated data supplied to a multispecies occupancy
model, I demonstrated that prior aggregation improves estimates of
(1) metacommunity richness and (2) environmental covariates were associated
with species-specific occupancy probabilities. When applied to a dataset of small
mammals in Vermont, prior aggregation allowed the model to estimate occu-
pancy correlates of the Eastern cottontail Sylvilagus floridanus, a species
observed at several sites in the region but never captured. Prior aggregation can
be used to improve the analysis of several important metrics in population and
community ecology, including abundance, survivorship, and diversity.

KEYWORDS
Bayesian models, detection error, hierarchical models, informative priors, prior aggregation

that are biased low (Benoit et al., 2018; Iknayan et al.,
2014) and adds “noise” to the data in the form of false neg-

Estimates of biodiversity and other population and com-
munity metrics are often biased due to observer error.
Biases or errors, especially detection errors, can be intro-
duced by characteristics of the target species, study design,
or observer (Iknayan et al., 2014; Kellner & Swihart, 2014).
When species richness or species occupancy is of interest,
detection error results in richness and occupancy estimates

atives, making it more difficult to evaluate the importance
of environmental covariates (Gu & Swihart, 2004). While
good study design can reduce survey bias (Banks-Leite
et al., 2014) and statistical methods such as the Chao index
(Chao, 1984) or bootstrapping (Burnham & Overton, 1979)
can correct species richness counts, optimal study
design is not always feasible, and traditional statistical
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estimates are biased when detection rates vary spatially
or when the community contains many rare species
(New & Handel, 2015).

More recent approaches to account for detection error
include hierarchical occupancy models (MacKenzie et al.,
2002), specifically the multispecies occupancy model
(MSOM). MSOMs yield less biased estimates than tradi-
tional methods by jointly analyzing an ecological model of
occurrence and an observation model of detection. This
strategy allows the model to explicitly differentiate
between the true state of the ecological metric and detec-
tion error (Dorazio & Royle, 2005; Iknayan et al., 2014;
New & Handel, 2015). In a Bayesian framework, MSOMs
are also able to efficiently model data-poor species, either
by assuming that all species are ecologically comparable
(Link & Sauer, 1996) or by using informative priors with
information drawn from sources such as previous studies
or natural history collections (McCarthy & Masters, 2005).
However, the structure of MSOMs often renders these two
approaches incompatible. This paper presents a method
that combines the above approaches to model rare or
undetected species with little to no associated data.

Unlike single-species models, MSOMs assume that
species in the community are ecologically similar
(i.e., exchangeable) such that species-level parameters
can be drawn from a common prior distribution
(Figure 1a). In other words, all species are analyzed in
the context of the full community. A community-level
approach means that rare or hard-to-detect species,
which may not yield sufficient data to model individu-
ally, can be analyzed by “borrowing” information from

common species (Ferrier & Guisan, 2006; Link & Sauer,
1996). Although “borrowing” information results in esti-
mates of rare species that are closer to the community
mean (Iknayan et al.,, 2014; Kéry & Schaub, 2011),
MSOMs yield more accurate and more precise estimates
of rare species than single-species models.

The use of community-level distributions in Bayesian
MSOMs also implies that species that are known to occur
in the study region, but were never detected during sam-
pling, can be included in the model using a method called
data augmentation (Royle et al., 2007; Royle & Dorazio,
2012; Figure 1b), in which a series of zeros are appended
to the original data set to represent species in a community
that may have been undetected (Royle et al., 2007). Data
augmentation yields reliable community-level estimates
when model assumptions are not severely violated and
few species in the community are missed (Guillera-Arroita
et al., 2019). However, the lack of data for augmented spe-
cies means that estimates of occupancy or covariate
responses for undetected species are inevitably “pulled”
toward the center of the community distribution (Link &
Sauer, 1996). In practice, this lack of data means the
model does not have enough information to accurately
estimate specific occupancy or detection probabilities for
particular undetected species, so these species can only be
used to calculate an asymptotic species richness estimate
for the study region (Guillera-Arroita et al., 2019).

In a Bayesian framework, the information needed to
estimate specific parameters for particular undetected
species can be readily incorporated using an informative
species level prior. When priors and data are consistent,
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FIGURE 1 (a)Community-based detection models account for rare or undetected species by assuming all species-level parameters,
such as occupancy probability ¥, are drawn from a common probability distribution. (b) Species that were never detected during sampling
(red) can be analyzed by adding a set of zeros to the data. However, a lack of data means the estimated parameters (dashed red line) are
“pulled” to the center of the distribution and away from the true value (solid red line). (c) When the identities of undetected species are
known, the hyperprior (black line) can be combined with species-level information (solid red line) to form an aggregated prior

(dashed red line) to reduce the “pull” of the hyperprior and more accurately model these species. Silhouette images of species were sourced
from PhyloPic with attribution and license information available at https://www.phylopic.org/permalinks/6afobf48239139440440f6f2e4ealc6

41cfof2b3c5e88de96b2332e9569a612f.
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using informative priors in ecological models tends to
increase the confidence in conclusions (i.e., narrower
credible intervals; McCarthy & Masters, 2005), particu-
larly when data are scarce (Low Choy et al., 2009). In the
context of hierarchical detection models, other authors
have demonstrated that “weakly informative” priors can
be used to stabilize the model and prevent coefficients
from taking extreme values (Lemoine, 2019; Northrup &
Gerber, 2018), but the use of ecologically informative
priors is much rarer. Ecologically informative priors may
be rare in part because replacing the uninformative spe-
cies level prior with an informative prior means that the
species is no longer described by the community-level
distribution, and the advantages of modeling species in
the context of the community are lost.

A potential solution to this problem is prior aggrega-
tion applied to species-level parameters for undetected
species. Originally used to combine multiple expert opin-
ions (Genest et al., 1984), prior aggregation can be
applied to MSOMs to combine the community prior and
an ecologically informative prior into a single prior distri-
bution (Figure 1c). With an aggregated prior distribution,
the model analyzes undetected species in the context of
the community while allowing researchers to retain the
identity of each undetected species and reduce the pull of
the community prior. However, to my knowledge, prior
aggregation has never been used in the context of hierar-
chical occupancy models and its effects on model perfor-
mance remain unknown.

Using simulated data with known parameter values, I
tested whether ecologically informative, aggregated priors
for undetected species improved the estimates of MSOMs.
I compared the posterior estimates of metacommunity
richness, local species richness, and species-level regres-
sion coefficients from MSOMs with (1) nonaggregated
uninformative priors, (2) informative priors for undetected
species, and (3) misspecified priors for undetected species.
I also varied the relative contribution of the informative or
misspecified priors to the aggregated prior to determining
whether prior strength influenced model estimates.
Finally, I applied prior aggregation to an empirical dataset
of small mammal communities in Vermont to model occu-
pancy probability and species-level coefficients of an
undetected species known to occur in the study region.

METHODS
Data simulation
I simulated 50 metacommunities of i = 1, 2, ... 22 species

which potentially occupy j =1, 2, ..., 30 sites. The first
step in the simulation was to generate raw species-level

occupancy probabilities, ¥;, from a beta distribution
(Equation 1) for the first 20 species in the community.
The remaining two species, which would represent
undetected species that were present in the community,
had species-level occupancy probabilities that were fixed
at 0.1 and 0.4, respectively, to facilitate comparison across
simulations. These probabilities represent relatively rare
species, which are more likely to be undetected during
sampling due to their low occurrence (MacKenzie et al.,
2005). The raw occupancy probabilities were logit
transformed to create the latent state of the species-level
occupancy intercepts, a0;, in which i designated the simu-
lated species. Logit-transforming the raw probabilities
allows the inclusion of environmental covariates that
may influence site-level occupancy:

¥, ~Beta (a=2,=4), (1)
o0; = IOglt(‘Pl) (2)

The second step was simulating site-level occupancy
probability as a logit-linear function of species-level inter-
cepts and a continuous covariate (Equation 3). Species in
each metacommunity were assigned coefficient values
drawn from normal distributions with a mean of 0, 3, or
—3, representing no response, a strong positive response,
or a strong negative response to the environmental covar-
iate. Coefficients were randomly assigned to the
20 detected species, whereas responses for the undetected
species were fixed at 0 and —3. These values were chosen
to examine if prior aggregation scenarios differed in their
ability to detect both significant (—3) and nonsignificant
(0) coefficient values, with the significant coefficient
selected as an effect of equal magnitude of the detected
species. For each metacommunity, the true occupancy
state of each species Zj;, denoted 1 if the species was pre-
sent at the site and 0 if absent, was modeled as the out-
come of a Bernoulli trial with the site-level occupancy
probability as the probability of success (Equation 4).
Species that did not occupy any site in the initial simula-
tion were assigned a value of 1 to the site with the highest
occupancy probability to ensure there were 22 species in
each metacommunity simulation:

logit (‘PU) = a0; + al;cov;, (3)
Z; ~Bern(¥y). (4)

After generating site-level occupancy values, I simulated
survey data by generating species-level detection probabili-
ties p; using a beta distribution p;~ Beta(a=2,=38),
resulting in low-to-moderate detection probabilities for
the 20 detected species (95% interval 0.028-0.482).

85UB017 SUOWIWIOD SAeaID 3|(deol dde 8Ly Aq peusenof ae Ssppiie O ‘8sN JO SaInJ 10} A%Iq1T8UlJUO AB]1M UO (SUORIPUOD-PUe-SWLBYWI00 A8 1M ARe.q U [UO//:Sdny) SUOIIPUOD Pue SUWLB | 8L 88S " [202/20/T0] Uo Ariqiauliuo A8 |1m uowse A JO AIseAIIN AQ Trez des/z00T 0T/I0p/Wo A8 |im Afe.q Ul UO'S euINO fesa//scy Wwo.j pepeo|umod ‘2 ‘7202 ‘Z8S56E6T



40f13 |

BEASLEY

Undetected species were assigned a species-level proba-
bility of 0. Detection of a species during a survey was
modeled as the outcome of a Bernoulli trial with the
species-level detection probability as the probability of
success, conditional on the species being present at the
site. If any of the 20 “detected” species were not detected
during any survey, I assigned a value of 1 to the survey
with the highest detection probability to ensure there
were 20 detected and 2 undetected species in each simu-
lation. Values for the beta distributions were chosen to
create a scenario in which data augmentation is effective:
when some observed species in the community have low
occupancy and/or low detection probabilities, it is more
reasonable to expect that some species were absent from
all sampled sites or missed during all surveys (Guillera-
Arroita et al., 2019).

Multispecies occupancy model

I analyzed the data using a single-season Bayesian MSOM
(Dorazio & Royle, 2005, Appendix S1: Figure S1). This
modeling framework consists of three levels; the first of
which represents the true occupancy state w; of all
observed and potentially unobserved species i in the
metacommunity (Equation 5). The dataset of observed
species n can be augmented by m all-zero encounter histo-
ries representing species that may or may not be present
in the metacommunity. The choice of m is somewhat arbi-
trary, but should be large enough that the posterior distri-
bution for estimated metacommunity richness N is not
truncated but not so large as to be computationally prohib-
itive (Guillera-Arroita et al., 2019). The parameter w; is
then modeled as a Bernoulli trial such that w; = 0 for spe-
cies that were not present in the metacommunity and
w; =1 for species that were either directly observed or
were not observed but were likely to be available for sam-
pling in the metacommunity (Dorazio & Royle, 2005), in
which the parameter € represents the probability a species
is available for sampling in the metacommunity. I aug-
mented the simulated dataset with five undetected species
(M =5), two of which were present in the simulated
metacommunity but not detected. The remaining three
augmented species were included as a control to ensure
prior aggregation had minimal influence on other detec-
tion histories that may be included in the dataset.

The second level of the model represents the ecologi-
cal quantity of interest; in this case, site-level occupancy.
Site-level occupancy Zj; takes the value of 1 when species
i is present at site j, provided the species is available for
sampling in the metacommunity. Occupancy is modeled
as the outcome of a Bernoulli trial with the probability of
success defined as the product of site-level occupancy
probability ¥; and the metacommunity parameter w;

(Equation 6). Thus, a species cannot occupy a site if it is
not available for sampling in the metacommunity.

In empirical datasets, site-level occupancy Z; is often
imperfectly observed due to detection errors associated
with the sampling process. By sampling each site multi-
ple times k =1, 2, 3 over a short period, the model can
estimate the probability of detecting a species that
occupies the site during a given survey and better esti-
mate the true occupancy state (Dorazio & Royle, 2005).
Detection of a given species at a site during a given sam-
pling period (x;;) is modeled as a Bernoulli process con-
ditional on the species i occupying the site j (Equation 7).
Similar to the model for site occupancy, the probability of
success is defined as the product of detection probability
during a given sampling period py; and the true occu-
pancy state Z;, meaning a species cannot be detected at a
site where it is not present:

w; ~ Bernoulli(Q), (5)
Zij|w; ~ Bernoulli(¥; X w;), (6)
Xijk | Zij ~ Bernoulli (pijk X Zij) ) (7)

Environmental covariates can be used to accurately
estimate occupancy and detection probabilities using a
logit link function. I used the simulated covariate
described above to estimate site-level occupancy probabil-
ity ¥;; (Equation 8):

logit(¥;) = «0; + al;cov;. (8)

Species-level values for model intercepts (a0, b0) and
covariate coefficients (al) for all detected species were
modeled using uninformative priors (e.g., Equation 9). The
parameters of the community-level distribution from which
species were drawn, called hyperparameters, were in turn
drawn from a hyperprior distribution (Equations 10-12):

a0; ~ N (40, Ta0)5 9)
Tqo ~ Gamma(0.1,0.1), (10)
Heo = log(mean.a0) — log(1 — mean.a0), (11)

mean.a0 ~ U(0,1). (12)

Hyperprior specification was derived from Zipkin
et al. (2009) and Kéry and Royle (2009); these hyperpriors
allow for heterogeneity in occupancy probabilities
(Coull & Agresti, 1999; Royle et al., 2007). The parameter
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tau (t) in the equations above represents precision, and is
used instead of standard deviation ¢ in the JAGS pro-
gramming language (Plummer, 2017).

Although the use of a hyperprior allows species with
little or no data to be modeled in the context of the full
community, model estimates for these species are dispro-
portionately “pulled” to the center of the hyperprior dis-
tribution due to a lack of data. However, solely modeling
these species using highly informative priors results in a
loss of the advantages gained by modeling rare species in
the context of the community. Prior aggregation is a
promising tool for resisting the “pull” of the hyperprior
when modeling undetected species, while also retaining
the advantages of modeling undetected species in the
context of the community. In brief, prior aggregation
involves combining two or more prior distributions using
a defined pooling method (Genest et al., 1984), typically
as a way to account for multiple differing expert opinions.
In the context of modeling undetected species, one can
aggregate (1) the hyperprior distribution, toward the cen-
ter of which undetected species are pulled, and (2) a prior
distribution based on information about the undetected
species that is not present in the dataset.

I calculated aggregated priors for the two undetected
species for the parameters a0 and al using logarithmic
pooling for Gaussian distributions (de Carvalho et al.,
2015, Equations 13-15):

. o
1
2
Gpooled = W’ (14)
Hpooled = Glz)ooled X Z (W* X u)' (15)

In which ¢ is a vector of variances of the initial prior
distributions, p a vector of means, and o a vector of
pooling weights (see below). The parameter a0 was an
aggregate of the community prior N(pa, T40) and an eco-
logical prior N(ptrue, Trrue)- For models with informative
priors, pr.e Was the true, simulated occupancy probabil-
ity that was logit transformed and rounded to the nearest
integer; models with misspecified priors used the oppo-
site sign as the true value. Similarly, parameter al was an
aggregate of the community prior and the ecological
prior. Models with informative priors used the true value
for the species-level coefficient rounded to the nearest
whole number as the mean of the distribution, whereas
misspecified models used a value with the opposite sign
(or a value of —3 if the true coefficient value was 0). The
precision parameter T was assigned a value of 0.5 for all
ecological priors.

Pooling weights (Equation 13) define the relative
contribution of individual priors to the aggregated distri-
bution. The weight assigned to each prior distribution
represents the relative degree of confidence in the infor-
mation it contains (Genest et al., 1984). Methods for sys-
tematically assigning prior weights have been developed
(e.g., de Carvalho et al., 2015); however, these methods
are typically used for aggregating multiple expert opin-
ions, leaving weight assignment in other situations some-
what arbitrary (French, 1983). I assigned the ecological
priors for weakly informative models a weight of 0.15
and the community prior a weight of 0.85; for moderately
informative models, both priors were assigned a weight
of 0.5; and for strongly informative models, a weight of
0.85 for the ecological prior and a weight of 0.15 for the
community prior. The vector of weights for each aggre-
gated prior must sum to 1.

I compared models with possible prior combinations
(informative/misspecified X weakly/moderately/strongly)
to one another and to a single model with uninformative
priors, resulting in seven different models. I compared
estimates of (1) regional species richness, (2) site-level
species richness, and (3) species-level regression coeffi-
cients across the seven models. To ensure that prior
aggregation has minimal influence on estimates of
(1) community-level parameters and (2) species for which
an informative prior was not used, I visually compared
the posterior distributions of (1) community-level
hyperparameters and (2) species-level model coefficients.
I estimated all model parameters using Bayesian analysis
in the program JAGS (Plummer, 2017) and the R package
R2jags (R Core Team, 2020; Su & Yajima, 2015). I ran
each model using three Markov chains and assessed con-
vergence using the R-hat statistic, which compares
between-chain and within-chain parameter estimates for
each of the Markov chains (Gelman & Rubin, 1992), and
by visual examination of the trace plots. An R-hat less
than 1.1 and trace plots with a stable, “grassy” appear-
ance (i.e., well mixed, Gelman et al., 2013) were consid-
ered converged. Values for the length of the Markov
chains, burn-in period, and thinning were chosen on a
trial-and-error basis until model convergence was
achieved. A tutorial of the prior aggregation method
using R and JAGS can be found in Appendix S2; data and
code associated with the analysis are archived on Zenodo
(Beasley, 2023).

Application to real data
In addition to the simulation analyses, I applied the prior

aggregation method to an empirical dataset of small
mammal trapping surveys collected in Vermont from
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May to July 2019. Sampling occurred in 30 sites located
in forests, uncultivated fields, and active farms
(Appendix S1: Figure S2). Trapping transects were 300 m
long, with trap stations 10 m apart, with two traps per
station placed to maximize capture efficiency (e.g., along
fallen logs or rock ledges). Traps were baited with sun-
flower seeds and supplemented with batting and meal-
worms to reduce cold-related mortality (Do et al., 2013).
Traps were opened in the evening and checked the fol-
lowing morning for a period of 3 consecutive days. I
marked captured mammals with an ear tag, identified
them to species, and released them unharmed at the
point of capture.

I collected vegetation data at every third trap station
along each transect for a total of 10 samples per site. Veg-
etation metrics included (1) composition, measured as
the proportion of each cover type in a 0.5 X 0.5 m grid,
(2) vertical structure, measured using the point-touch
method described in Wiens (1969), and (3) canopy cover,
measured using a spherical convex densiometer. I
reduced the dimensionality of the data using a principal
components analysis (PCA). I incorporated the first prin-
cipal component as a covariate in the MSOM because
multiple variables had relatively large loadings and the
principal component was ecologically interpretable.
Should the principal component not be interpretable or
dominated by one variable, the variable with the highest
loading could be chosen as the environmental covariate.

I examined how the use of informative priors affected
estimates of real datasets in a similar manner to the pro-
cedure described in the previous section. The dataset was
augmented with two all-zero encounter histories; with
one representing the Eastern -cottontail Sylvilagus
floridanus, a species common in the study region and
visually observed at some sampling sites, but with low
catchability (and therefore detectability) in Sherman live
traps.

I applied aggregated priors to the occupancy intercept
a0; and the species-level coefficient al;. Prior information
was derived from the literature and field notes taken dur-
ing sampling (Table 1). I ran one model with weakly
informative priors and another with moderately

informative priors using the relative weights defined in
the previous section; these models were compared with a
model with uninformative priors. I compared estimates
of (1) regional species richness and (2) species-level coef-
ficients across these three models. Model specifications
such as the number of Markov chains, model iterations,
and evaluation of model convergence were determined in
the manner described in the previous section.

RESULTS
Simulated data

Models with informative priors generally yielded more
accurate estimates of metacommunity richness than
models with uninformative or misspecified priors
(Figures 2 and 3). Specifically, models with strongly
informative priors (i.e., the contribution of the ecologi-
cally informative distribution to the aggregate prior was
high compared with the community distribution) yielded
higher posterior probabilities of 22 species in the
metacommunity compared with the models with unin-
formative or misspecified priors (Figure 2). Models with
weakly informative and moderately informative priors
also tended to yield higher posterior probabilities of
22 species than models with uninformative priors
(Figure 2). Models with moderately informative and
strongly informative priors yielded higher estimated
probabilities of at least one of the undetected species
being present in the metacommunity (e.g., N =21 or
N = 22; Figure 3). All models were equally likely to
overestimate regional richness (Appendix S1: Figure S3).

At the site level, models with moderately and strongly
informative priors yielded richness estimates that were
closer to true values than models with uninformative
priors (Figure 4). Models with weakly and moderately
misspecified priors generally estimated site-level richness
as accurately as models with uninformative priors.
Models with weakly informative and strongly
misspecified priors yielded richness estimates that devi-
ated the most from the true values.

TABLE 1 Sources of ecologically informative priors for Sylvilagus floridanus.

Description

Sylvilagus floridanus was visually observed at 20% of sites; the mean of the prior

distribution was set at logit (0.2) with a variance of 0.5

Parameter Source
oo Field notes
o Chapman et al., 1980;

DeGraaf & Yamasaki, 2001
set at —2.

Field notes

Old fields and grasslands are preferred habitat in the northeastern United States,
interpreted as a negative response to PC1. The mean of the prior distribution was

All visual observations of this species occurred in old fields or active farms.
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FIGURE 2 Estimated posterior probabilities of a metacommunity richness N = 22 species across models with uninformative,

informative, and misspecified priors. Letters denote groups as assigned using a Tukey test. Models with strongly informative priors yielded

higher estimated probabilities for the true metacommunity richness of 22 species than models with uninformative priors. Models with

weakly and moderately informative priors also performed marginally better than models with uninformative priors. Models with

misspecified priors performed similarly to models with uninformative priors.

The model with uninformative priors correctly esti-
mated a nonsignificant coefficient for one undetected
species but failed to detect a significant coefficient for the
second undetected species (Figure 5). Models with infor-
mative and misspecified priors generally yielded more
precise estimates of coefficients for undetected species
than models with uninformative priors, although the
accuracy varied depending on the accuracy of
the information supplied to the model (Figure 5). The
models with weakly informative priors, weakly
misspecified priors, and moderately misspecified priors
yielded estimates qualitatively similar to the model with
uninformed priors, and models with moderately and
strongly informative priors correctly estimated model
coefficients for both undetected species (Figure 5). The
model with strongly misspecified priors incorrectly esti-
mated a positive regression coefficient for both
undetected species (Figure 5). The improvement in coeffi-
cient estimates probably caused the improvement in site-
level occupancy estimates for undetected species in
models with informative priors (Appendix S1: Figures S4
and S5).

The prior aggregation had minimal influence on the
posterior estimates of community-level hyperparameters

(Appendix S1: Figure S6) and species-level model coeffi-
cients (Appendix S1: Figure S7).

Vermont small mammals

I captured 89 individuals representing 10 species. The
most common species were the white-footed mouse
Peromyscus leucopus with 33 individuals, the meadow
jumping mouse Zapus hudsonius with 17 individuals,
and the woodland jumping mouse Napaeozapus insignis
with 16 individuals. All other species were represented by
fewer than 10 individuals.

The first principal component from the PCA of the
vegetation data explained 82.4% of the variation in the
data. This principal component was included in
the model as an environmental covariate, capturing a
gradient from mostly grassy cover (low PCA scores) to
cover that is predominately leaf litter and other dead veg-
etation (high PCA scores; Appendix S1: Figure S8).

The model with uninformed priors yielded a
metacommunity richness estimate of 10 species, while
models with informed priors yielded estimates of 11 spe-
cies (Appendix S1: Figure S9). At the species level, the
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FIGURE 3 Estimated posterior probabilities of a metacommunity richness N = 21 or N = 22 species across models with uninformative,
informative, and misspecified priors. Letters denote groups as assigned using the Tukey test. Models with strongly informative priors yielded
higher estimated probabilities for the true metacommunity richness of 22 species than models with uninformative priors. Models with
moderately informative priors also performed marginally better than models with uninformative priors. Models with misspecified priors
performed similarly to models with uninformative priors.
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FIGURE 4 Mean differences between true and estimated site-level richness of the simulated datasets, standardized as a percent error.
Models with moderately and strongly informative priors outperformed models with uninformative, weakly informative, and strongly
misspecified priors. Models with strongly misspecified priors performed less well than models with uninformative priors. Letters denote
groups as assigned using the Tukey test.
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augmented species S. floridanus was not predicted to
have a covariate response significantly different from 0 in
any model; however, the species-level estimate from
models with informed priors was more precise than the
model with uninformed priors (Figure 6).

DISCUSSION

These results suggest that using prior aggregation to
model undetected species improves estimates of multiple
model parameters, provided the information supplied to
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FIGURE 5 Estimated responses of two undetected species to simulated covariates. Error bars represent the 95% CI; error bars that did

not overlap 0 (dashed line) were considered significant. Red dots represent the true value of the simulated coefficient. Increasing the relative

weight of the species level prior increased the precision of model estimates, regardless of the accuracy of the prior. The model correctly

estimated a nonresponse to the covariate in all models except models with strongly misspecified priors for the first undetected species (a).

Models with moderately and strongly informative priors correctly estimated a significant, negative response to the covariate for the second

undetected species (b).
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FIGURE 6 Species-specific responses to the vegetation covariate for the augmented species Sylvilagus floridanus. Error bars represent
the 95% credible interval; bars that do not overlap 0 (dashed line) were considered significant. No model yielded significant covariate

estimates.
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the model is correct (Figures 3 and 5). However, the
degree of improvement depends on the parameter in
question: prior aggregation tends to have a larger effect
on species-level coefficient estimates than site-level or
regional richness estimates. These findings align with
previous work suggesting that informative priors in
Bayesian models tended to improve model estimates
when priors are appropriately specified (Lemoine, 2019;
McCarthy & Masters, 2005; Morris et al., 2015
Northrup & Gerber, 2018). In addition, prior aggregation
tends to result in more ecologically meaningful conclu-
sions for undetected species by reducing the pull of the
community prior and retaining information about species
with particular characteristics rather than hypothetical
species of unknown identity.

Species are more likely to be undetected when they
are rare (McCarthy et al., 2013). Rare species are often of
conservation concern (Cunningham & Lindenmayer,
2005; Fagan et al., 2002; MacKenzie et al., 2005) and can
drive site-level variation in metrics such as species rich-
ness, beta diversity, and functional diversity (Leitdo et al.,
2016; Mao & Colwell, 2005; Routledge, 1977, but see
Lennon et al., 2004). A common strategy for addressing
this problem is to use common, closely related species as
a proxy for rare relatives (Gaston & Kunin, 1997); how-
ever, rare and common species are often ecologically dif-
ferent (Kunin & Gaston, 1993; Leitdo et al., 2016). Using
a hierarchical MSOM is an improvement over the use of
rare species as a proxy because prior estimates of the
community are derived from data from all species in the
community, rare and common. However, using a com-
munity prior still uses data from species that may differ
from the undetected species of interest in ecologically
important ways. Accounting for these differences with
ecologically informative priors can lead to more accurate
estimates on which to base management decisions.

One consideration when applying aggregated priors to
inform species-level coefficients is that when the ecologi-
cally informed prior is assigned a high weight relative to
the community prior, the posterior for the coefficient is
essentially estimated from the prior (Figure 5). When the
information supplied to the prior is incorrect, this results
in severe bias in the coefficient estimate (Figure 5), which
can lead to poor management decisions. Bias can also be
introduced to the aggregated prior via a mismatch between
data types (e.g., qualitative prior information to quantita-
tive covariates, Kuhnert et al., 2010) or when multiple
covariates are considered in context (Chen et al., 1999).
The former issue is applicable to the Vermont small mam-
mals dataset: the first principal component of the vegeta-
tion PCA was a reasonable match for the “open habitat”
preference of undetected species S. floridanus from histori-
cal data (Chapman et al, 1980; DeGraaf & Yamasaki,

2001). However, covariates measured using modern tech-
niques (e.g., LIDAR) or modified using more recent statis-
tical methods (e.g., PCA) might not be as compatible with
historical records. Although highly informative priors can
markedly improve estimates of species-level coefficients
(Figure 5), it is important to ensure that the information
in the prior is compatible with the environmental covari-
ate before inducing an informative prior on the species-
level coefficient.

From a management perspective, estimates for spe-
cific sites may be just as important as regional or species-
level estimates, especially for targeted management
actions such as habitat restoration efforts or reserve
design (Cabeza et al., 2004). My results suggest that prior
aggregation only improves site-level estimates when the
relative weight of the informative prior is moderate or
strong (Figure 4), and therefore prior aggregation may
not be beneficial when characteristics of the site are of
primary interest. However, the lack of improvement
of site-level estimates may be due to characteristics of the
simulated data and model structure rather than charac-
teristics of the priors. The simulated dataset included spe-
cies with positive and negative covariate responses,
which could be affecting the accuracy of site-level rich-
ness estimates compared with a covariate with more uni-
form effects, such as patch area. Models for the simulated
and empirical datasets also assumed stochastic detection
errors. Detectability in real communities is often
influenced by site-level or species-level characteristics
(Iknayan et al., 2014) and accounting for site-level varia-
tion in detectability using model covariates tends to
improve estimates (New & Handel, 2015). In systems in
which detectability varies by site and is modeled using a
covariate, the use of prior aggregation may improve site-
level richness estimates compared with models with
uninformative priors.

A key component of prior aggregation is assigning
weights to each of the contributing priors. Weight choice
determines how much of the ecologically informed prior
contributes to the final aggregate and should reflect the
reliability of the source of information (Genest et al.,
1984). Defining the reliability of a source is difficult, and
in practice the choice of prior weight is somewhat arbi-
trary (French, 1983). That said, methods for choosing
weights in a more meaningful way have been developed
(Abbas, 2009; Myung et al., 1996; Rufo, Martin, & Pérez,
2012; Rufo, Pérez, & Martin, 2012) and a few of these also
account for uncertainty about the weights (de Carvalho
et al., 2015; Poole & Raftery, 2000). A possible avenue for
future research would include adapting these methods
for use in MSOMs.

Although prior aggregation shows promise as a
method for using external data to model undetected

85UB017 SUOWIWIOD SAeaID 3|(deol dde 8Ly Aq peusenof ae Ssppiie O ‘8sN JO SaInJ 10} A%Iq1T8UlJUO AB]1M UO (SUORIPUOD-PUe-SWLBYWI00 A8 1M ARe.q U [UO//:Sdny) SUOIIPUOD Pue SUWLB | 8L 88S " [202/20/T0] Uo Ariqiauliuo A8 |1m uowse A JO AIseAIIN AQ Trez des/z00T 0T/I0p/Wo A8 |im Afe.q Ul UO'S euINO fesa//scy Wwo.j pepeo|umod ‘2 ‘7202 ‘Z8S56E6T



ECOLOGICAL APPLICATIONS

| 11 0f 13

species more accurately, inducing strong priors on these
species can potentially lead to erratic model results. The
following practices will allow a user to better detect a sce-
nario in which prior aggregation may cause unantici-
pated results and provide insights into model behavior.
First, as with all Bayesian hierarchical models, a prior
sensitivity analysis is a must to determine the effects of
prior choice on the posterior distribution (Banner et al.,
2020; Cressie et al., 2009; Lele & Dennis, 2009;
Northrup & Gerber, 2018). In the context of prior aggre-
gation, this includes adjusting prior weights, along with
other parameters that potentially influence the “informa-
tiveness” of the prior, such as .

Second, if including covariate scenarios that were not
tested here, it is best to first test a toy model using simu-
lated data before application to a real data set. Such sce-
narios include, but are not limited to, the inclusion of
detection covariates or additional occupancy covariates,
“dummy” variables for modeling the effects of a categorial
covariate, or covariate interactions. Third, there can be dif-
ficulty mapping historical data onto modern priors. For
example, the results of a PCA might not be readily inter-
pretable or, if interpretable, may not be compatible with
previous studies using raw environmental variables. Test-
ing increasingly complex modeling scenarios is beyond the
scope of this paper, but previous work suggests that infor-
mative priors can be used in mortality, survival, or occu-
pancy models with multiple covariates to improve the
precision and accuracy of model estimates if the priors are
appropriately specified (Morris et al., 2015; Parlato et al.,
2021; Rodhouse et al., 2019).

The concept of “borrowing” data from multiple
sources is not new in ecology (McCarthy & Masters,
2005), and pooling information across species within a
dataset is a common practice in hierarchical detection
models (Iknayan et al., 2014; Link & Sauer, 1996). Using
prior aggregation to incorporate data from external
sources, such as previous studies or natural history col-
lections, to improve model accuracy is an extension of
this concept. In addition to the Vermont small mammals
case study discussed previously, prior aggregation may be
used to bridge gaps in monitoring (Rodhouse et al.,
2019) in communities where species may have gone
locally extinct; or may be used in conjunction with Bayes
factors to compare hypotheses about communities in
which species composition is uncertain (Kary et al., 2016;
Vanpaemel & Lee, 2012). The flexibility of hierarchical
detection models means that prior aggregation is not lim-
ited to questions of species richness or occupancy: prior
aggregation can potentially be used to add information
about missing individuals in a population (Royle &
Dorazio, 2012) leading to more accurate estimates of
abundance, survival rates, or diversity estimates. Despite

the continuing challenges of choosing meaningful prior
weights (de Carvalho et al., 2015; Genest et al., 1984) and
prior selection in Bayesian ecological models in general
(Banner et al., 2020; Lemoine, 2019; Northrup & Gerber,
2018), prior aggregation is a promising tool for using
external data to generate more reasonable estimates in
systems for which nondetection is of ecological concern.
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